How To Filter Dataframe In R
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to filter data frame by categorical variable in R?
To filter information frame by categorical variable in R, nosotros can follow the below steps −
-
Use inbuilt data sets or create a new data set up and wait at pinnacle few rows in the data set up.
-
Then, expect at the bottom few rows in the data prepare.
-
Check the information structure.
-
Filter the information by chiselled column using split function.
Use inbuilt information set
Permit's consider CO2 data ready in base R −
Live Demo
data(CO2) head(CO2,ten)
On executing, the above script generates the beneath output(this output volition vary on your organization due to randomization) −
Grouped Data: uptake ~ conc | Plant Institute Type Treatment conc uptake i Qn1 Quebec nonchilled 95 16.0 2 Qn1 Quebec nonchilled 175 30.four iii Qn1 Quebec nonchilled 250 34.8 4 Qn1 Quebec nonchilled 350 37.ii 5 Qn1 Quebec nonchilled 500 35.3 6 Qn1 Quebec nonchilled 675 39.two 7 Qn1 Quebec nonchilled g 39.7 eight Qn2 Quebec nonchilled 95 thirteen.half-dozen 9 Qn2 Quebec nonchilled 175 27.3 ten Qn2 Quebec nonchilled 250 37.i
Await at few bottom rows
Use tail function to look at some bottom rows in CO2 data −
Live Demo
data(CO2) tail(CO2,ten)
Output
Grouped Data: uptake ~ conc | Constitute Plant Type Treatment conc uptake 75 Mc2 Mississippi chilled 500 12.5 76 Mc2 Mississippi chilled 675 xiii.vii 77 Mc2 Mississippi chilled 1000 14.4 78 Mc3 Mississippi chilled 95 ten.6 79 Mc3 Mississippi chilled 175 xviii.0 fourscore Mc3 Mississippi chilled 250 17.nine 81 Mc3 Mississippi chilled 350 17.9 82 Mc3 Mississippi chilled 500 17.9 83 Mc3 Mississippi chilled 675 18.9 84 Mc3 Mississippi chilled grand 19.9
Check the data construction
Use str function to check the data construction of data in CO2 −
Example
Live Demo
data(CO2) str(CO2)
Output
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 84 obs. of 5 variables: $ Plant : Ord.cistron westward/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 i one one i 2 2 2 ... $ Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 ane 1 1 one 1 ane ane ... $ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 i one 1 1 1 1 one 1 i ... $ conc : num 95 175 250 350 500 675 chiliad 95 175 250 ... $ uptake : num 16 xxx.4 34.8 37.2 35.3 39.2 39.7 13.half dozen 27.3 37.1 ... - attr(*, "formula")=Form 'formula' language uptake ~ conc | Establish .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> - attr(*, "outer")=Class 'formula' linguistic communication ~Treatment * Type .. ..- attr(*, ".Environs")=<environment: R_EmptyEnv> - attr(*, "labels")=List of ii ..$ ten: chr "Ambient carbon dioxide concentration" ..$ y: chr "CO2 uptake rate" - attr(*, "units")=List of 2 ..$ x: chr "(uL/L)" ..$ y: chr "(umol/m^two due south)"
Filter data frame past categorical column
Using split up office to filter the data frame CO2 based on Type column −
Live Demo
data(CO2) split(CO2,CO2$Blazon)
Output
$Quebec Grouped Data: uptake ~ conc | Institute Plant Type Handling conc uptake ane Qn1 Quebec nonchilled 95 16.0 2 Qn1 Quebec nonchilled 175 thirty.iv 3 Qn1 Quebec nonchilled 250 34.8 4 Qn1 Quebec nonchilled 350 37.2 five Qn1 Quebec nonchilled 500 35.iii 6 Qn1 Quebec nonchilled 675 39.2 7 Qn1 Quebec nonchilled 1000 39.7 8 Qn2 Quebec nonchilled 95 13.vi ix Qn2 Quebec nonchilled 175 27.3 x Qn2 Quebec nonchilled 250 37.1 11 Qn2 Quebec nonchilled 350 41.8 12 Qn2 Quebec nonchilled 500 twoscore.6 thirteen Qn2 Quebec nonchilled 675 41.4 14 Qn2 Quebec nonchilled m 44.iii xv Qn3 Quebec nonchilled 95 16.2 16 Qn3 Quebec nonchilled 175 32.4 17 Qn3 Quebec nonchilled 250 40.3 18 Qn3 Quebec nonchilled 350 42.i 19 Qn3 Quebec nonchilled 500 42.ix xx Qn3 Quebec nonchilled 675 43.9 21 Qn3 Quebec nonchilled 1000 45.5 22 Qc1 Quebec chilled 95 xiv.ii 23 Qc1 Quebec chilled 175 24.1 24 Qc1 Quebec chilled 250 30.3 25 Qc1 Quebec chilled 350 34.half dozen 26 Qc1 Quebec chilled 500 32.v 27 Qc1 Quebec chilled 675 35.iv 28 Qc1 Quebec chilled 1000 38.seven 29 Qc2 Quebec chilled 95 nine.3 30 Qc2 Quebec chilled 175 27.3 31 Qc2 Quebec chilled 250 35.0 32 Qc2 Quebec chilled 350 38.8 33 Qc2 Quebec chilled 500 38.half-dozen 34 Qc2 Quebec chilled 675 37.five 35 Qc2 Quebec chilled 1000 42.4 36 Qc3 Quebec chilled 95 15.1 37 Qc3 Quebec chilled 175 21.0 38 Qc3 Quebec chilled 250 38.1 39 Qc3 Quebec chilled 350 34.0 twoscore Qc3 Quebec chilled 500 38.ix 41 Qc3 Quebec chilled 675 39.half-dozen 42 Qc3 Quebec chilled thousand 41.4 $Mississippi Grouped Data: uptake ~ conc | Plant Plant Type Treatment conc uptake 43 Mn1 Mississippi nonchilled 95 10.half-dozen 44 Mn1 Mississippi nonchilled 175 19.2 45 Mn1 Mississippi nonchilled 250 26.2 46 Mn1 Mississippi nonchilled 350 30.0 47 Mn1 Mississippi nonchilled 500 30.9 48 Mn1 Mississippi nonchilled 675 32.4 49 Mn1 Mississippi nonchilled 1000 35.v 50 Mn2 Mississippi nonchilled 95 12.0 51 Mn2 Mississippi nonchilled 175 22.0 52 Mn2 Mississippi nonchilled 250 thirty.6 53 Mn2 Mississippi nonchilled 350 31.8 54 Mn2 Mississippi nonchilled 500 32.4 55 Mn2 Mississippi nonchilled 675 31.1 56 Mn2 Mississippi nonchilled 1000 31.5 57 Mn3 Mississippi nonchilled 95 11.3 58 Mn3 Mississippi nonchilled 175 xix.iv 59 Mn3 Mississippi nonchilled 250 25.8 60 Mn3 Mississippi nonchilled 350 27.9 61 Mn3 Mississippi nonchilled 500 28.v 62 Mn3 Mississippi nonchilled 675 28.1 63 Mn3 Mississippi nonchilled thou 27.eight 64 Mc1 Mississippi chilled 95 10.5 65 Mc1 Mississippi chilled 175 fourteen.9 66 Mc1 Mississippi chilled 250 18.one 67 Mc1 Mississippi chilled 350 xviii.9 68 Mc1 Mississippi chilled 500 19.5 69 Mc1 Mississippi chilled 675 22.2 seventy Mc1 Mississippi chilled 1000 21.9 71 Mc2 Mississippi chilled 95 seven.vii 72 Mc2 Mississippi chilled 175 11.iv 73 Mc2 Mississippi chilled 250 12.three 74 Mc2 Mississippi chilled 350 thirteen.0 75 Mc2 Mississippi chilled 500 12.5 76 Mc2 Mississippi chilled 675 13.vii 77 Mc2 Mississippi chilled 1000 fourteen.4 78 Mc3 Mississippi chilled 95 10.6 79 Mc3 Mississippi chilled 175 18.0 80 Mc3 Mississippi chilled 250 17.ix 81 Mc3 Mississippi chilled 350 17.nine 82 Mc3 Mississippi chilled 500 17.ix 83 Mc3 Mississippi chilled 675 eighteen.9 84 Mc3 Mississippi chilled g 19.9
Published on 07-Aug-2021 08:12:26
- Related Questions & Answers
- How to create a chiselled variable using a data frame column in R?
- How to create a frequency cavalcade for categorical variable in an R data frame?
- How to find the summary by categorical variable in R?
- How to find the sum based on a categorical variable in an R data frame?
- How to convert all words of a string or chiselled variable in an R data frame to uppercase?
- How to check if a column is categorical in R information frame?
- How to convert a data frame with categorical columns to numeric in R?
- How to filter rows by excluding a particular value in columns of the R data frame?
- How to standardize columns if some columns are categorical in R data frame?
- How to initialize a data frame with variable names in R?
- Prepare values in categorical column to numeric values in R data frame.
- How to find the mean of a numerical column past two categorical columns in an R information frame?
- How to create a table of sums of a detached variable for 2 categorical variables in an R data frame?
- How to subset an R data frame based on numerical and chiselled column?
- How to carve up a information frame past column in R?
How To Filter Dataframe In R,
Source: https://www.tutorialspoint.com/how-to-filter-data-frame-by-categorical-variable-in-r
Posted by: hooksthislem.blogspot.com
0 Response to "How To Filter Dataframe In R"
Post a Comment